Electrical energy prediction study case based on neural networks

نویسندگان

  • Cristian Vasar
  • Octavian Prostean
  • Ioan Filip
  • Iosif Szeidert
چکیده

This paper presents some considerations regarding the prediction of the electrical energy consumption. It is well known that the central element of a microeconomic analysis is represented by the economical agents actions, actions that follow their own interest such as: the consumer – maximization of his satisfaction, the producer – maximization of his profit. The study case is focused on the prediction of the sold energy in Banat region. The goal of this study case is to optimize the electrical energy quantity purchased from the producer by the energy distributor in Banat region. The prediction is based on neural networks. There are used feed-forward and Elman type neural networks. In order to enhance the prediction accuracy there have been used both linear and nonlinear preprocessing units. The aspects considered in this paper can be extrapolated in any general case of prediction-based application, not only in the already stated case of electrical energy.

منابع مشابه

Traffic Signal Prediction Using Elman Neural Network and Particle Swarm Optimization

Prediction of traffic is very crucial for its management. Because of human involvement in the generation of this phenomenon, traffic signal is normally accompanied by noise and high levels of non-stationarity. Therefore, traffic signal prediction as one of the important subjects of study has attracted researchers’ interests. In this study, a combinatorial approach is proposed for traffic signal...

متن کامل

Prediction of pore facies using GMDH-type neural networks: a case study from the South Pars gas field, Persian Gulf basin

The current study proposes a two-step approach for pore facies characterization in the carbonate reservoirs with an example from the Kangan and Dalanformations in the South Pars gas field. In the first step, pore facies were determined based on Mercury Injection Capillary Pressure (MICP) data incorporation with the Hierarchical Clustering Analysis (HCA) method. In the next step, polynomial meta...

متن کامل

Short Term Load Forecasting by Using ESN Neural Network Hamedan Province Case Study

Abstract Forecasting electrical energy demand and consumption is one of the important decision-making tools in distributing companies for making contracts scheduling and purchasing electrical energy. This paper studies load consumption modeling in Hamedan city province distribution network by applying ESN neural network. Weather forecasting data such as minimum day temperature, average day temp...

متن کامل

Artificial Neural Networks Analysis Used to Evaluate the Molecular Interactions between Selected Drugs and Human Cyclooxygenase2 Receptor

  Objective(s): A fast and reliable evaluation of the binding energy from a single conformation of a molecular complex is an important practical task. Artificial neural networks (ANNs) are strong tools for predicting nonlinear functions which are used in this paper to predict binding energy. We proposed a structure that obtains binding energy using physicochemical molecular descripti...

متن کامل

Geoid Determination Based on Log Sigmoid Function of Artificial Neural Networks: (A case Study: Iran)

A Back Propagation Artificial Neural Network (BPANN) is a well-known learning algorithmpredicated on a gradient descent method that minimizes the square error involving the networkoutput and the goal of output values. In this study, 261 GPS/Leveling and 8869 gravity intensityvalues of Iran were selected, then the geoid with three methods “ellipsoidal stokes integral”,“BPANN”, and “collocation” ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004